INTEGRAL METHOD OF CALCULATING A TURBULENT
BOUNDARY LAYER IN A UNIFORM GAS STREAM

V. G. Sharov UDC 532.526.4

A previously developed integral method for calculating a turbulent boundary layer with pressure
gradient and blowing [1] has been generalized to the case of flow with heat transfer.

Calculation of flow in a turbulent boundary layer with longitudinal pressure drop, blowing, and heat trans-
fer is 2 matter of considerable interest. In spite of the appearance in recent years of finite-difference methods
for integrating the turbulent boundary-layer equations, integral methods are preferable in many cases.

Most of the well-known integral methods are based on assigning some a priori approximation for the
velocity profile or the shear stress in the turbulent boundary layer. A somewhat different approach to assign-
ing a family of velocity profiles was suggested in [1]. The velocity profile in the boundary layer is obtained by
integrating the turbulent boundary-layer equations separately in the inner and outer regions, accounting for flow
peculiarities in each zone. Here the only assumption is that universal relations hold for the velocity profile in
each region, and the specific form of these relations is not specified.

In the present paper the integral method proposed in [1] is generalized to the case of flow with heat trans-
fer,

The averaged equations of continuity, momentum transfer, and energy describing steady-state two-di-
mensional flow in a turbulent boundary layer in a compressible gas, on a permeable surface, and the boundary
conditions have the form [2]
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Uniformity of the gas stream presupposes that there are no chemical reactions and that the gas blown in-
to the boundary layer is identical in composition with the main flow gas.

Following the approach adopted in [1], we shall divide the entire boundary layer into two regions: an inner
region in which the law of the wall holds
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and an outer region where the wake law holds,

Rybinskii Aviation-Technology Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 34,
No. 3, pp. 500-506, March, 1978, Original article submitted February 7, 1977.

0022-0841/78/3403-0335$07.50 ©1978 Plenum Publishing Corporation 339



For the turbulent viscosity in the inner region (¢;) and in the wake law region (ep) we use modified
Prandtl—Van Dreist and Clauser relations, respectively [3]:
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The value of the variable 7 at the laminar sublayer boundary 71,-is given by the transcendental relation
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To calculate the molecular gas viscosity 4 we used the power law [2]
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In accordance with the turbulent boundary layer model adopted, we shall start from the flow peculiarities
in each region, in constructing a family of velocity profiles. Here we use a technique discussed in detail in [1}.

In the inner region the equation of motion (2) is integrated formally over the transverse coordinate, as-
suming that the law of the wall (7) holds and that the density and velocity profiles in the boundary layer are re-
lated by the modified Crocco relation [2]:
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where ¢ is the friction parameter; and Ty is the recovery temperature,
The resulting expression for the shear stresses has the form
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Here by p/py we mean not the approximate relation (12), but the more accurate dependence of density on
velocity which will be obtained below. Thus, the Crocco integral is used in the present method only to derive
an explicit form of Eq. (13).

By substituting the expression for the turbulent viscosity (8) into Eq. (2) for the shear stresses, following
some transformations, we obtain a single relation between the velocity profiles and the shear stresses in the
inner boundary-layer region
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For a fixed value of the friction factor and with the known relation between the density and velocity, Equations
(13) and (14) describe the velocity profile in the inner region of the turbulent boundary layer of a compressible
gas,
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Following the approach used in [1], the boundary-layer equation of motion in the inner region, in Von
Mises type variables
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is integrated in the local similarity approximation with boundary conditions corresponding to mixing of the
two flows:
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Here Ug is a free parameter, chosenfrom the matching condition; and primes denote derivation with respect
to z.

From the integration we obtain relations describing a family of velocity profiles in the wake law region:
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The velocity profile in the inner region is compared with one of the curves of the family (18). In ac-
cordance with the technique suggested in [1], the matching of the two profiles is performed in terms of the
velocity and its first derivative with respect to the transverse coordinates. The position of the point of com~
parison is determined from the condition that the turbulent viscosity be continuous.

For convenience of later analysis we convert to the Crocco variables x and U in the energy equation (3},
and restrict ourselves in this examination to the local similarity hypothesis, The possibility of a similarity
approach has been discussed frequently in the literature [2, 4]. The estimates made in [4], together with
numerous practical calculations in [2], confirm that local similarity is a permissible approximation in estab-
lishing the relation between the enthalpy and velocity profiles in a turbulent boundary layer. The dimension~
less energy equation resulting from the similarity approximations in Crocco variables has the form
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Here the primes denote derivation with respect to U. By introducing the effective Prandtl number Preff = (4 +
g)/(uPrt +ePr,i‘1) we can consider the energy equation in the form of Eq. (20) directly for the entire boundary-
layer region, without dividing into a laminar sublayer and a turbulent core. Here the nonlinear nature of inter-
action between the molecular and molar transport processes is described by the Van Dreist damping factor,
introduced into the expression for the turbulent viscosity.

By integrating Eq. (20) with boundary conditions (5) and (6), we obtain relations linking the enthalpy and
the velocity in the turbulent boundary layer:
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From the relations obtained for the enthalpy profile we derive a formula to calculate the recovery factor [2]
r=2R(1). (24)

The only undetermined parameter in the expressions for the velocity and enthalpy profiles is the friction
factor cf. To obtain it we consider the integral momentum relation in the form
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Integrating Eq.(25) with respect to x, substituting the transformed expression for the momentum thick-
ness into it, and solving the relation obtained for cf, we have
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Here the subscripts m and t denote values of the quantities at the points of comparison of the velocity profile
and at the initial section, respectively.

With Eq.(26), the expressions obtained earlier for the velocity profiles, Eqgs.(14) and (18), and the enthalpy
profile, Eq. (21), we can set up a process of successive approximations to evaluate the friction coefficient cg.

With this method turbulent boundary layer flows were calculated for various conditions at the surface and
at the outer edge. The gas specific heat ¢, was considered to be constant in all the calculations. We assumed
the following values for the molecular and turbulent Prandtl numbers: Pr = 0,72; Pr1 = 0.9-1,0 (air). The
parameters at the outer edge of the boundary layer were calculated from the isentropic relations.

Figure 1 shows the calculated friction coefficient cf in the turbulent boundary layer on a thermally insu-
lated flat plate for three values of Mach number Mg, in comparison with the fest data of [5]. Good agreement
between the theoretical and experimental relations can be seen.
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Fig. 1. Friction coefficient on a thermally insulated flat plate, for
three values of Mach number: 1) M = 2,0; 2} 2,95; 3) 4.2, ’

Fig, 2. Friction coefficient for flows with a strong (I), moderate (II),
and weak (II]) positive pressure gradient. The solid curves are for
the integral method, and the broken curves are for the numerical
method of [6]; x is in cm.,
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Fig. 3. Profiles of velocity (a) and temperature (b) through
a turbulent boundary layer with a strong (I), moderate (II),
and weak (III) positive pressure gradient; y is in m.

Figure 2 compares the theoretical and experimental values of friction coefficient for three values of posi-
tive pressure gradient differing in magnitude and nature. The theoretical curves are in quite satisfactory
agreement with the experimental data of [6]. The maximum deviation is observed for the largest pressure
gradient and is roughly 20% at the section x = 17,5 cm. It is interesting to note that the results obtained here
using the integral method agreed with the experimental results fully as well as the curves taken from [6] which
correspond to numerical solution of the turbulent boundary layer equations.

The velocity and temperature profiles for the three flows considered are shown in Fig,3a, b. As one
would expect, the largest deviation from the test data is observed in case I (the greatest pressure gradient),

In general it should be noted that the integral method described leads to quite reliable results in calculat-
ing turbulent boundary-layer flows with heat transfer, giving an accuracy, which, as a rule, is no worse than
that from numerical solution of the turbulent boundary-layer equations.

NOTATION
X,y are the coordinates directed along the surface and along the normal;
u, v are the longitudinal and transverse velocity component;
Py cp, T, h are the density, specific heat, temperature, and enthalpy of the gas;
My, Ay €, AT are the molecular and turbulent viscosity and thermal conductivity;
Pr, Prr, Preff are the molecular, tubulent, and effective Prandtl numbers;
¢, N are the variables of the law of the wall;
v is the dynamic velocity;
T is the friction shear stress;
P+, B« are the pressure gradient and blowing parameters;
k, o, n are the turbulence constants;
U is the dimensionless velocity;
H = h/hg is the dimensionless enthalpy;
r is the recovery factor;
T, = Te[l + r(y—1)/
2) ol is the recovery temperature;
M is the Mach number;
w, B, & are the heat transfer, compressibility, and friction parameters;
z, & are the Von Mises type variables;
P is the stream function;
Pg = p/Pe is the dimensionless density;
By is the pressure gradient parameter;
H* = §%/5% is the shape parameter;
O*, Oo*¥* are the displacement and momentum thicknesses;
Ug is the parameter for a family of jet velocity profiles;
cr is the friction coefficient.
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Indices

e is the outer edge of the boundary layer;
w is the body surface;
t is the transition point;
L is the laminar sublayer boundary;
i is the inner sublayer;
0 is the outer sublayer.
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ENTRAINMENT OF A VISCOPLASTIC FLUID BY
A MOVING SURFACE

E, P. Shul'man and V. I. Baikov UDC 532,135

The thickness of the film remaining on the surface of a vertical plate during its extraction from
a viscoplastic liquid is determined theoretically.

One of the most widespread methods of superposing a layer of lubricating fluid on a solid in different
technological processes is to extract the solid from the fluid at a constant velocity v,. Processes to obtain
photographic materials, magnetic recorder tapes, cable insulation, etc. are examples.

Let an infinite plate be extracted vertically upward at a constant velocity v, from a sufficiently large
vessel with a fluid. Far from the plate the fluid is at rest and its surface is horizontal. Let us take this hori-
zontal surface as the origin x = 0 and let us direct the y axis perpendicularly to the plate and the x axis upward
in the direction of plate motion,

The thickness of the film remaining on the plate surface as it is extracted from the fluid is determined by
the interaction between the internal friction forces, the mass forces, and the surface tension force, The de-
gree of influence of each of these forces on the quantity of fluid being entrapped is determined by the physical
properties of the fluid, the state of the surface, the velocity of plate extraction, and a number of other factors.

According to the Landa— Levich —Deryagin theory [1, 2], the whole film can be separated into two do-
mains: 1) a zone located sufficiently high above the meniscus and entrained directly by the body (the free
boundary of the fluid is almost parallel to the plane of the plate in this domain); 2) the zone of the meniscus,
which is deformed somewhat because of the plate motion (the shape of the surface is taken approximately coin-
cident with the static meniscus). The solutions obtained for each domain must then be joined, where the junc-
tion condition is continuity of the surface curvature in the domain of small curvatures.

Following this path, we determine the thickness of the film remaining on the plate surface during its ex-
traction from a viscoplastic fluid.

Thus, we have the static meniscus equation for zone 2:
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