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A previous ly  developed integral  method for  calculating a turbulent  boundary l aye r  with p r e s s u r e  
gradient  and blowing [1] has been genera l ized  to the case of flow with heat  t r ans fe r .  

Calculation of flow in a turbulent  boundary l aye r  with longitudinal p r e s s u r e  drop,  blowing, and heat  t r a n s -  
f e r  is a ma t t e r  of considerable  in teres t .  In spite of the appearance  in r ecen t  y ea r s  of f in i te -d i f ference  methods 
for  integrat ing the turbulent  boundary- layer  equat ions,  integral  methods are  pre fe rab le  in many cases .  

Most of the well-known integral  methods are based on assigning some a p r io r i  approximation for  the 
veloci ty  prof i le  or  the shea r  s t r e s s  in the turbulent  boundary l ayer .  A somewhat different  approach to ass ign-  
ing a family of veloci ty  prof i les  was suggested in [1]. The veloci ty prof i le  in the boundary l aye r  is obtained by 
integrat ing the turbulent  boundary- layer  equations separa te ly  in the inner and outer  reg ions ,  accounting for  flow 
pecul ia r i t i es  in each zone. Here the only assumption is that un iversa l  re la t ions  hold for  the veloci ty prof i le  in 
each region,  and the specif ic  fo rm of these re la t ions  is not specified.  

In the p re sen t  paper  the in tegral  method proposed in [1] is general ized to the case of flow with heat  t r an s -  
for .  

The averaged equations of continuity,  momentum t r a n s f e r ,  and energy descr ib ing  s teady-s ta te  two-di -  
mensional  flow in a turbulent  boundary l aye r  in a compress ib le  gas,  on a permeable  sur face ,  and the boundary 
conditions have the fo rm [2] 
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Uniformity of the gas s t r e am presupposes  that there  a re  no chemical  reac t ions  and that the gas blown in- 
to the boundary layer  is Identical in composit ion with the main flow gas. 

Following the approach adopted in [1], we shall  divide the en t i re  boundary l aye r  into two regions:  an inner 
region in which the law of the wall  holds 

-- �9 ('l), ,1 = Pw~./~w, ~ = u / v , ,  v ,  = (xw/p~)'/-~, (7) 

and an outer  region where  the wake law holds. 
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For  the turbulent viscosi ty  in the inner region (el) and in the wake law region (%) we use modified 
P r a n d t l - V a n  Dreis t  and Clauser  re la t ions ,  respect ively [3]: 

8i = t-c2~l ~ [ 1 i exp ( ~I/A)I ~ dcp/drl, 
- " ~  
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The value of the variable ~ at the laminar  sublayer  boundary NL.iS given by the t ranscendental  relat ion 

( P-~-~ exp (B,~IL) + = - - .  
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To calculate the molecular  gas viscosi ty/J  we used the power law [2] 
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In accordance with the turbulent  boundary layer  model adopted, we shall s t a r t  f rom the flow peculiari t ies  
in each region,  in constructing a family of velocity profi les.  Here we use a technique discussed in detail in [1]. 

In the inner region the equation of motion (2) is integrated formal ly  over the t r ansverse  coordinate,  a s -  
suming that the law of the wall (7) holds and that the density and velocity profiles in the boundary layer  are r e -  
lated by the modified Crocco relat ion [2]: 

p = ( l _ _ r  o ~ )-z I - -T ' -  f ~ = r T - - 1 M ~  T~, (12) 
Pw "~ r - -  --~ r , co = Tw, 2 T w 

where ~ is the fr ict ion paramete r ;  and T r is the recovery  tempera ture .  

The resul t ing expression for the shear  s t r e s ses  has the form 

= I + BU + ~tw~3 r i dr, 'qpe du~ 
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Here by P/Pw we mean not the approximate relat ion (12), but the more accurate  dependence of density on 
velocity which will be obtained below. Thus,  the Crocco integral  is used in the present  method only to derive 
an explicit  form of Eq.  (13). 

By substituting the expression for the turbulent viscosi ty (8) into Eq. (2) for the shear  s t r e s se s ,  following 
some t ransformat ions ,  we obtain a single relat ion between the velocity profi les and the shear  s t r e s ses  in the 
inner boundary-layer  region 

i 2 p x2rl z ( 1 --  e--~iA)Z 
P~ dcp. (14) 

n-- [( , , ]=_4p~,~n=(i_e_./ . , )~. l , /= . 
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For  a fixed value of the fr ict ion factor  and with the known relat ion between the density and velocity,  Equations 
(13) and (14) describe the velocity profile in the inner region of the turbulent boundary layer  of a compressible 
gas. 
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Following the approach used in [1], the boundary- laye r  equation of motion in the inner region,  in Von 
Mises type var iab les  

x 

z = ~/~1/~, ~ = J SoPeuedx (15) 
0 

is integrated in the local similarity approximation with boundary conditions corresponding to mixing of the 
two flows: 

U" U' P'o z ( 1! ) 8 0  ~ due u_+-5-+__+~oU+ - i  =0, ~0 = - - - - ,  (16) Po p0U ~ p0U' u~ d~ 

U.--~l(z-+oo), U-~-Us(z-+--oo ). (17) 

Here  U s is a f ree  p a r a m e t e r ,  chosen f rom the matching condition; and p r imes  denote der ivat ion with r e spec t  
to z. 

F r o m  the integrat ion we obtain re la t ions  descr ib ing a family of veloci ty prof i les  in the wake law region:  

U = I - - ( 1 - - U ) .  l(-boo)--l(z) (18) 
"s(.+ oo)--s(-- oo)' 
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The velocity profile in the inner region is compared with one of the curves of the family (18). In ac- 
cordance with the technique suggested in [I], the matching of the two profiles is performed in terms of the 
veloci ty  and its f i r s t  der ivat ive  with r e spec t  to the t r a n s v e r s e  coordinates .  The posit ion of the point of com-  
par i son  is de te rmined  f rom the condition that the turbulent  v i scos i ty  be continuous. 

F o r  convenience of l a te r  analysis  we conver t  to the Crocco var iab les  x and U in the energy equation (3), 
and r e s t r i c t  ourse lves  in this examinat ion to the local  s imi la r i ty  hypothesis .  The possibil i ty of a s imi la r i ty  
approach has been d iscussed  f requent ly  in the l i t e ra tu re  [2, 4]. The es t imates  made in [4], together  with 
numerous  prac t ica l  calculat ions in [2], conf i rm that local s imi la r i ty  is a pe rmiss ib le  approximation in es tab-  
l ishing the re la t ion between the enthalpy and veloci ty  prof i les  in a turbulent  boundary layer .  The d imension-  
less  energy equation resul t ing  f rom the s imi la r i ty  approximations in Crocco var iab les  has the fo rm 

(H'" )" (t/tw) H' - - _  ' U2e (20) 
~-eff + (1 --preff ) ~/Tw Pref f - -~ �9 

Here  the p r imes  denote der ivat ion with r e spec t  to U. By introducing the effect ive Prandt l  number  P re f f  = (g + 
e) /(gPr -1 + el~r~ 1) we can consider  the energy  equation in the fo rm of Eq. (20) d i rec t ly  for  the en t i re  boundary-  
l aye r  region,  without dividing into a l aminar  sublayer  and a turbulent  core .  Here  the nonlinear nature  of i n t e r -  
action between the molecu la r  and molar  t r an sp o r t  p r o c e s s e s  is descr ibed  by the Van Dre is t  damping fac to r ,  
introduced into the express ion  for  the turbulent  viscosi ty .  

By integrat ing Eq. (20) with boundary conditions (5) and (6), we obtain re la t ions  linking the enthalpy and 
the veloci ty  in the turbulent  boundary l aye r :  

- - s ( l )  . ~ [ s ( o  ] 
H(U) = H w Jr- (I --Hw) S-~-U~ -k ~- [S--(U)-R(1)--R(U)j, (21) 
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F r o m  the re la t ions  obtained fo r  the enthalpy prof i le  we der ive  a fo rmula  to calcula te  the r e c o v e r y  fac to r  [2] 

r ---- 2R (1). (24) 

The only unde te rmined  p a r a m e t e r  in the e x p r e s s i o n s  for  the veloci ty  and enthalpy prof i les  is the f r ic t ion  
f ac to r  cf. To obtain it  we cons ider  the in tegra l  momen tum re la t ion  in the f o r m  

dO (1 q- B) e p, 0 = p~ufl**e F, P~Ue 
dx 

dx, H * = - -  6"=  (1--poU)dy, 
F = J dx ue 6"*' 

x t 0 
eo 

6** = ~ poU (1 - -U)  dy. 
. /  
0 

(25) 

In tegra t ing  Eq. (25) with r e s p e c t  to x ,  subst i tut ing the t r a n s f o r m e d  e x p r e s s i o n  for  the momen tum th ick-  
n e s s  into it ,  and solving the re la t ion  obtained for  cf,  we have 

U m  X 

f ; ; ] es=2Bwer  P ~  d~l d V F 1  c lpeue( l -~B)eFdx--~l /2eP ( 1 - - U ) d z ~ ' P ,  tU,(6t (26) 
L 2 

0 x t z m 

Here  the subsc r ip t s  m and t denote va lues  of the quant i t ies  at  the points of compar i son  of the veloci ty  prof i le  
and at the init ial  sec t ion ,  r e spec t ive ly .  

With Eq.(26),  the e x p r e s s i o n s  obtained e a r l i e r  for  the veloci ty  p ro f i l e s ,  Eqs.  (14) and (18), and the enthalpy 
p ro f i l e ,  Eq. (21), we can se t  up a p r o c e s s  of succes s ive  approx imat ions  to evaluate  the f r ic t ion  coeff icient  cf. 

With this method turbulent  boundary l aye r  flows were  calculated for  va r ious  conditions at  the sur face  and 
a t  the ou te r  edge. The gas spec i f ic  hea t  Cp was  cons idered  to be constant  in all  the calculat ions.  We a s su med  
the following values  for  the mo lecu l a r  and turbulent  Prandt l  numbers :  P r  = 0.72; P r  T = 0.9-1.0 (air). The 
p a r a m e t e r s  a t  the outer  edge of the boundary l a y e r  w e r e  calcula ted f r o m  the i sen t rop ic  re la t ions .  

F igure  1 shows the ca lcula ted  f r ic t ion  coeff ic ient  cf in the turbulent  boundary l aye r  on a t he rma l ly  insu-  
la ted f l a t  p la te  for  t h ree  values  of Mach num ber  Me, in compar i son  with the t e s t  data of [5]. Good a g r e e m e n t  
between the theore t i ca l  and expe r imen ta l  r e la t ions  can be seen. 

, 

oo i 

0'86 /o 2o ~ 6o Relm" 

z .... o.j  o f  J 

2 

0 I 2 x 

Fig. 1 Fig. 2 

Fig. 1. F r ic t ion  coeff icient  on a t he rma l ly  insulated f la t  p la te ,  for  
th ree  values  o f  Mach number :  1) M = 2.0; 2) 2.95; 3) 4.2. 

Fig. 2. F r ic t ion  coefficient  for  flows with a s t rong  (I), modera t e  (H), 
and weak (III) posi t ive  p r e s s u r e  gradient .  The solid curves  a r e  for  
the in tegra l  method,  and the  broken curves  a re  for  the numer i ca l  
method of [6]; x is in cm. 
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Fig. 3. P ro f i l e s  of ve loci ty  (a) and t e m p e r a t u r e  (b) through 
a turbulent  boundary l aye r  with a s t rong  (I), mode ra t e  (ID, 
and weak  (HI) posi t ive p r e s s u r e  gradient ;  y is in m. 

F igure  2 c o m p a r e s  the theore t i ca l  and expe r imen ta l  va lues  of f r ic t ion  coeff icient  for  th ree  values  of p o s i -  
t ive p r e s s u r e  gradient  d i f fer ing in magnitude and nature .  The theore t i ca l  curves  a re  in quite s a t i s f ac to ry  
a g r e e m e n t  with the expe r imen ta l  data of [6]. The m a x i m u m  deviat ion is obse rved  for  the l a r g e s t  p r e s s u r e  
gradient  and is roughly 20% at  the sect ion x = 17.5 cm. I t  is in te res t ing  to note that  the r e su l t s  obtained h e r e  
us ing the in tegra l  method ag reed  with the expe r imen ta l  r e su l t s  fully as  well  as the curves  taken f r o m  [6] which 
co r re spond  to numer i ca l  solution of the turbulent  boundary l aye r  equations.  

The veloci ty  and t e m p e r a t u r e  p rof i l es  for  the three  flows cons idered  a r e  shown in Fig. 3a, b. As one 
would expect ,  the l a r g e s t  deviat ion f r o m  the t e s t  data is obse rved  in case  I (the g r e a t e s t  p r e s s u r e  gradient) .  

In genera l  i t  should be noted that  the in tegra l  method desc r ibed  leads to quite re l iab le  r e su l t s  in ca lcu la t -  
ing turbulent  bounda ry - l aye r  flows with heat  t r a n s f e r ,  giving an a c c u r a c y ,  which,  as a ru le ,  is no worse  than 
that  f r o m  n u m e r i c a l  solution of the turbulent  bounda ry - l aye r  equations.  

N O T A T I O N  

x,  y 
U , V  

p,  Cp, T,  h 
~, k, e, k T 
Pr, PrT, Pref f 
~o, 
V$ 

T 

P, ,  B,  
k, ~, n 
U 
H = h / ~  
r 

a re  the coordina tes  d i rec ted  along the sur face  and along the normal ;  
a r e  the longitudinal and t r a n s v e r s e  veloci ty  component;  
a re  the dens i ty ,  spec i f ic  heat ,  t e m p e r a t u r e ,  and enthalpy of the gas;  
a r e  the mo lecu l a r  and turbulent  v i scos i ty  and t h e r m a l  conductivity;  
a re  the m o l e c u l a r ,  tubulent,  and effect ive  Prandt l  number s ;  
a r e  the v a r i a b l e s  of the law of the wall ;  
is the dynamic  veloci ty;  
is the f r ic t ion  shea r  s t r e s s ;  
a re  the p r e s s u r e  gradient  and blowing p a r a m e t e r s ;  
a r e  the turbulence constants ;  
is the d imens ion les s  veloci ty;  
is the d imens ion less  enthalpy;  
is the r e c o v e r y  fac tor ;  

T r = Te[1 + r ( ~ - l ) /  
2) M2e ] is the r e c o v e r y  t e m p e r a t u r e ;  
M 

z,  
r 

PO = P/Pe 
~o 
H* = ~*/5"* 
6", 5** 

U s 
cf 

is the Mach number ;  
a re  the heat  t r a n s f e r ,  compre s s ib i l i t y ,  and f r ic t ion  p a r a m e t e r s ;  
a r e  the Von Mises  type va r i ab l e s ;  
is the s t r e a m  function; 
is the d imens ion les s  densi ty;  
is the p r e s s u r e  gradient  p a r a m e t e r ;  
is the shape p a r a m e t e r ;  
a re  the d i sp lacemen t  and momen tum th icknesses ;  
is the p a r a m e t e r  for  a fami ly  of je t  ve loci ty  p rof i l es ;  
is the f r ic t ion  coefficient .  
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I n d i c e s  

e 

w 

t 
L 
i 

0 

is the outer  edge of the boundary l aye r ;  
is  the body su r face ;  
is the t rans i t ion  point; 
is the l a m i n a r  sub layer  boundary;  
is the inner sub layer ;  
is the ou te r  sub layer .  

o 

2. 

3 .  
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ENTRAINMENT OF A VISCOPLASTIC FLUID BY 

A MOVING SURFACE 

E. P. Shul'man and V. I. Baikov UDC 532.135 

The thickness of the film remaining on the surface of a vertical plate during its extraction from 
a viscoplastic liquid is determined theoretically. 

One of the m o s t  w idesp read  methods of superpos ing  a l aye r  of lubr ica t ing  fluid on a solid in di f ferent  
technological  p r o c e s s e s  is to ex t r ac t  the solid f r o m  the fluid at  a constant  veloci ty  v 0. P r o c e s s e s  to obtain 
photographic  m a t e r i a l s ,  magne t ic  r e c o r d e r  t apes ,  cable insulat ion,  etc .  a re  examples .  

Le t  an infinite pla te  be ex t r ac t ed  ver t i ca l ly  upward at  a constant  veloci ty  v 0 f r o m  a sufficiently l a rge  
v e s s e l  with a fluid. F a r  f r o m  the pla te  the fluid is at r e s t  and i ts  su r face  is hor izonta l .  Le t  us take this h o r i -  
zontal  su r face  as  the or ig in  x = 0 and le t  us d i r ec t  the y axis pe rpend icu la r ly  to the plate and the x axis  upward 
in the d i rec t ion  of plate  motion.  

The th ickness  of the f i lm remain ing  on the plate sur face  as it  is ex t rac ted  f r o m  the fluid is de te rmined  by 
the in terac t ion  between the in terna l  f r ic t ion  f o r c e s ,  the m a s s  f o r c e s ,  and the su r face  tension force .  The de -  
gree  of influence of each  of these  fo r ce s  on the quantity of fluid being en t rapped  is de te rmined  by the physica l  
p r o p e r t i e s  of the fluid, the s ta te  of the su r f ace ,  the veloci ty  of plate  ex t rac t ion ,  and a number  of other  fac to rs .  

According to the L a n d a - L e v i c h - D e r y a g i n  theory [1, 2], the whole f i lm can be sepa ra ted  into two do-  
ma ins :  1) a zone located sufficiently high above the meniscus  and ent ra ined  d i rec t ly  by the body (the f r ee  
boundary of the fluid is a l m o s t  pa ra l l e l  to the plane of the plate  in this domain);  2) the zone of the men i scus ,  
which is de formed  somewha t  because  of the plate motion (the shape of the sur face  is taken approx imate ly  coin-  
cident with the s ta t ic  meniscus) .  The solutions obtained for  each  domain mus t  then be joined,  where  the junc-  
tion condition is  continuity of the su r face  cu rva tu re  in the domain of smal l  cu rva tu res .  

Following this path,  we de te rmine  the th ickness  of the f i lm remain ing  on the plate sur face  during i ts  ex -  
t rac t ion  f r o m  a v i scop las t i c  fluid. 

Thus ,  we have the s ta t ic  men i scus  equation for  zone 2: 

A. V. Lykov Insti tute of Heat and Mass T r a n s f e r ,  Academy of Sciences of the Be loruss ian  SSR. Minsk.  
T rans l a t ed  f r o m  Inzhene rno-F iz i chesk i i  Zhurnal ,  Vol. 34, No. 3, pp. 507-513, March,  1978. Original a r t i c le  
submit ted March 14, 1977. 

344 0022-0841/78/3403-0344 $07.50 �9 1978 Plenum Publishing Corpora t ion  


